

aafigure Documentation

	Manual
	Overview

	Installation

	Usage

	Short introduction
	Lines

	Arrows

	Boxes

	Fills

	Text

	Other

	Examples
	Simple tests

	Flow chart

	UML

	Electronics

	Timing diagrams

	Statistical diagrams

	Schedules

	Integrations
	Sphinx

	Docutils

	MoinMoin plug-in

	Appendix
	API and Implementation Notes

	3rd party integration of aafigure

	Authors and Contact

	License

Indices and tables

	Index

	Module Index

	Search Page

Manual

Overview

The original idea was to parse ASCII art images, embedded in reST documents and
output an image. This would mean that simple illustrations could be embedded as
ASCII art in the reST source and still look nice when converted to e.g. HTML.

aafigure can be used to write documents that contain drawings in plain text
documents and these drawings are converted to appropriate formats for e.g. HTML
or PDF versions of the same document.

Since then aafigure also grew into a standalone application providing a command
line tool for ASCII art to image conversion.

ASCII Art

The term “ASCII Art” describes a wide field [http://en.wikipedia.org/wiki/ASCII_art].

	(small) drawings found in email signatures

	smilies :-)

	raster images (this was popular to print images on text only printers a few
years ago)

	simple diagrams using lines, rectangles, arrows

aafigure aims to parse the last type of diagrams.

Other text to image tools

There are of course also a lot of other tools doing text to image conversions
of some sort. One of the main differences is typically that other tools use a
description language to generate images from rules. This is a major difference
to aafigure which aims to convert good looking diagrams/images etc. in text
files to better looking images as bitmap or vector graphics. Here are some
examples (by no means a complete list):

	Graphviz [http://www.graphviz.org/]

	Graphviz is a very popular tool that is excellent for displaying graphs and
networks. It does this by reading a list of relations between nodes and it
automatically finds the best way to place all the nodes in a visually
appealing way.

This is quite different from aafigure and both have their strengths.
Graphviz is very well suited to document state machines, class hierarchies
and other graphs.

	Mscgen [http://www.mcternan.me.uk/mscgen/]

	A tool that is specialized for sequence diagrams (used to describe
software, UML).

	ditaa [http://ditaa.sourceforge.net/]

	Convert diagrams to images.

Installation

aafigure

pip install aafigure

This installs a package that can be used from python (import aafigure) and
a command line script called aafigure.

The Python Imaging Library (PIL) needs to be installed when support for bitmap
formats is desired and it will need ReportLab for PDF output.

Requirements

	reportlab [http://www.reportlab.org/] (for LaTeX/PDF output)

	PIL [http://www.pythonware.com/products/pil/] or Pillow [https://python-pillow.org/] (for any image format other than SVG or PDF)

Usage

Command line tool

aafigure test.txt -t png -o test.png

The tool can also read from standard in and supports many options. Please look
at the command’s help (or man page):

aafigure --help

Short introduction

Lines

The - and | are normally used for lines. _ and ~ can also be
used. They are slightly longer lines than the -. _ is drawn a bit
lower and ~ a bit upper. = gives a thicker line. The later three line
types can only be drawn horizontally.

---- | ___ ~~~|
 | -- ___| | ===
                       ~~~





[image: _images/aafig-b772b13c981ad6a62f51a75ce1630449966a970f.svg]It is also possible to draw diagonal lines. Their use is somewhat restricted
though. Not all cases work as expected.

[image: _images/aafig-1fef6c0a5b8d74348625f29f568945eedfb40b3f.svg]With rounded flag:

[image: _images/aafig-62a17986bbf2e3f91b11cbea662568051e28ac30.svg]And drawing longer diagonal lines with different angles looks ugly...

[image: _images/aafig-511896e27a36954000569f0a0587c14ffafa1cfa.svg][image: _images/aafig-10c063e72984693c222d94159ba566c9b7dadf50.svg]


Arrows

Arrow styles are:

--->   | | | | | |
---<   | | | | | |
---o   ^ V v o O #
---O
---#





[image: _images/aafig-d94228f7c3c25c989c38916796b572e0758f523a.svg]


Boxes

Boxes are automatically draw when the edges are made with +, filled
boxes are made with X (must be at least two units high or wide).
It is also possible to make rounded edges in two ways:

+-----+   XXX  /--\     --   |
|     |   XXX  |  |    /    /
+-----+   XXX  \--/   |   --





[image: _images/aafig-3a89cdf95d7477d60c6696b46209afba0996d92f.svg]


Fills

Upper case characters generate shapes with borders, lower case without border.
Fills must be at least two characters wide or high. (This reduces the chance
that it is detected as Fill instead of a string)

[image: _images/aafig-357608b3eb119057a7af6e04b621a790be62042c.svg]Complex shapes can be filled:

[image: _images/aafig-4666caeaffe997683fc58ebfb50aaf7cf40924c7.svg]


Text

The images may contain text too. There are different styles to enter text:


direct

By default are repeated characters detected as fill:

Hello World  dd d
                d





[image: _images/aafig-72e7944784532af12020095261b072b4f48ffb59.svg]


quoted

Text between quotes has priority over any graphical meaning:

"Hello World"  dd d
                  d





[image: _images/aafig-d7463be9423fe33197c72119e77a705131143ad4.svg]", ' and \` are all valid quotation marks. The quotes are not
visible in the resulting image. This not only disables fills (see below), it
also treats -, | etc. as text.




textual option

The :textual: option disables horizontal fill detection. Fills are only
detected when they are vertically at least 2 characters high:

Hello World  dd d
                d





[image: _images/aafig-6dff305031e4d819fbaa92514191ef84dc0c3678.svg]




Other

* { }





[image: _images/aafig-40bc72233f42082e5dd697450f0da4714d37588d.svg]





          

      

      

    

  

    
      
          
            
  
Examples


Simple tests

Different arrow types:

[image: _images/aafig-35e5946a6ee34d7ca66528eab0cb007ffc887ba3.svg]Boxes and shapes:

[image: _images/aafig-a9e651649f494d81e687ec6acb548e5dd8f972da.svg][image: _images/aafig-5827862c23d4068ea0c4cc5f98f594da80fd5184.svg]


Flow chart

[image: _images/aafig-e0741032616954fff92b4b2360045ed98514da02.svg]


UML

No not really, yet. But you get the idea.

[image: _images/aafig-80620a2398ae29775b095dfad0c90f57c082b5bb.svg][image: _images/aafig-e2c1222de1497d4639c784cbce5f27df2ec4f18a.svg][image: _images/aafig-813615542d7e34f5ff3e663753cb9e0948bda238.svg]


Electronics

It would be cool if it could display simple schematics.

[image: _images/aafig-697704acd10268351d522f36d01d6de2a7980853.svg]
	Capacitor not good, would prefer --||--  -> symbol detection



[image: _images/aafig-e0754ec52ebc6e92f9a658400a3a29450a1c5a15.svg]
	Diodes OK

	Caps not optimal. Too far apart in image, not very good recognisable in
ASCII. Space cannot be removed as the two + signs would be connected
otherwise. The schematic below uses an other style.

	Arrows in transistor symbols can not be drawn



Here is a complete circuit with different parts:

[image: _images/aafig-2e8a603c57709554ffd252fc56b476eb19b0df6d.svg]


Timing diagrams

[image: _images/aafig-4ff6ae67f33555edb4099a4f6efd4c9ddbe3179b.svg]Here is one with descriptions:

[image: _images/aafig-706dee253cd179c7a4d14d8e81f96bbfc355d777.svg]


Statistical diagrams

Benfords [http://en.wikipedia.org/wiki/Benfords_law] distribution of the sizes of files on my hard drive:

[image: _images/aafig-7cff000e525fa2cebc0fb745f6287cdba6e4662b.svg]Just some bars:

[image: _images/aafig-332470dc8abd2effd56c56e6e8d534c31e9d3864.svg]


Schedules

[image: _images/aafig-fc07f2a31b9cea52a67d82d3c127bdc024537a86.svg]





          

      

      

    

  

    
      
          
            
  
Integrations



	Sphinx
	Quick Example

	Enabling the extension in Sphinx

	Configuration





	Docutils
	Docutils directive

	Docutils plug-in





	MoinMoin plug-in
	Usage













          

      

      

    

  

    
      
          
            
  
Sphinx

This extension adds the aafig directive that automatically selects the
image format to use according to the Sphinx [http://sphinx-doc.org/] writer used to generate the
documentation.


Quick Example

This source:

.. aafig::
    :aspect: 60
    :scale: 150
    :proportional:
    :textual:

    +-------+         +-----------+
    | Hello +-------->+ aafigure! |
    +-------+         +-----------+





is rendered as:

[image: _images/aafig-abcc578fb6944d77128eea80590e058578c26492.svg]


Enabling the extension in Sphinx [http://sphinx-doc.org/]

Just add aafigure.sphinxext to the list of extensions in the conf.py
file. For example:

extensions = ['aafigure.sphinxext']






Options

The aafig directive has the following options:


	:scale: <int>   enlarge or shrink image



	:line_width: <float>   change line with (SVG only currently)



	:foreground: <str>   foreground color in the form #rgb or #rrggbb



	:background: <str>   background color in the form #rgb or #rrggbb
(not for SVG output)



	:fill: <str>   fill color in the form #rgb or #rrggbb



	:aspect: <int>  change aspect ratio. Effectively it is the width of the
image that is multiplied by this percentage. The default setting 1 is useful
when shapes must have the same look when drawn horizontally or vertically.
However, :aspect: 50 looks more like the original ASCII and even smaller
factors may be useful for timing diagrams and such. But there is a risk that
text is cropped or is draw over an object besides it.

The stretching is done before drawing arrows or circles, so that they are
still good looking.



	:proportional:  use a proportional font instead of a mono-spaced



	:textual:  prefer to detect text instead of fills



	:rounded:  use arcs instead of straight lines for many diagonals



	:scale: and :aspect: options are specified using percentages
(without the % sign), to match the reStructuredText [http://docutils.sourceforge.net/rst.html] image directive.










Configuration

A few configuration options are added (all optional, of course ;) to Sphinx [http://sphinx-doc.org/]
so you can set them in the conf.py file:


	aafig_format <dict>:

	image format used for the different builders. All latex, html and
text builder are supported, and it should be trivial to add support for
other builders if they correctly handle images (and if aafigure can render
an image format suitable for that builder) by just adding the correct format
mapping here.

A special format None is supported, which means not to use aafigure to
render the image, just show the raw ASCII art as is in the resulting
document (using a literal block). This is almost only useful for the text
builder.

You can specify the format - builder mapping using a dict. For example:

aafig_format = dict(latex='pdf', html='svg', text=None)





These are the actual defaults.



	aafig_default_options <dict>:

	default aafigure options. These options are used by default unless they
are overridden explicitly in the aafig directive. The default aafigure
options are used if this is not specified. You can provide partial
defaults, for example:

aafig_default_options = dict(scale=150, aspect=50, proportional=True)





Note that in this case the aspec and scale options are specified
as floats, as originally done by aafigure.






TODO


	Add color validation for fill, background and foreground options.

	Add aa role for easily embed small images (like arrows).






History

This extension was once shipped separately: sphinxcontrib-aafig website [http://packages.python.org/sphinxcontrib-aafig/].









          

      

      

    

  

    
      
          
            
  
Docutils

The docutils directive is provided in aafigure/docutils.


Docutils directive

The aafigure directive has the following options:


	:scale: <float>   enlarge or shrink image



	:line_width: <float>   change line with (svg only currently)



	:format: <str> choose backend/output format: ‘svg’, ‘png’, all
bitmap formats that PIL supports can be used but only few make sense. Line
drawings have a good compression and better quality when saved as PNG
rather than a JPEG. The best quality will be achieved with SVG, tough not
all browsers support this vector image format at this time.



	:foreground: <str>   foreground color in the form #rgb or #rrggbb



	:background: <str>   background color in the form #rgb or #rrggbb
(not for SVG output)



	:fill: <str>   fill color in the form #rgb or #rrggbb



	:name: <str>   use this as filename instead of the automatic generated
name



	:aspect: <float>  change aspect ratio. Effectively it is the width of the
image that is multiplied by this factor. The default setting 1 is useful
when shapes must have the same look when drawn horizontally or vertically.
However, :aspect: 0.5 looks more like the original ASCII and even smaller
factors may be useful for timing diagrams and such. But there is a risk that
text is cropped or is draw over an object beside it.

The stretching is done before drawing arrows or circles, so that they are
still good looking.



	:proportional: <flag>  use a proportional font instead of a mono-spaced
one.








Docutils plug-in

The docutils-aafigure [http://pypi.python.org/pypi/aafigure] extension depends on the aafigure package also requires
setuptools (often packaged as python-setuptools) and Docutils [http://docutils.sf.net] itself
(0.5 or newer) must be installed.

After that, the aafigure directive will be available.







          

      

      

    

  

    
      
          
            
  
MoinMoin plug-in

MoinMoin [http://moinmo.in] is a popular Wiki engine. The plug-in allows to use aafigure drawings
within wiki pages.

Copy the file aafig.py from examples/moinmoin to
wiki/data/plugin/parser of the wiki. The aafigure module itself needs to
be installed for the Python version that is used to run MoinMoin [http://moinmo.in] (see above for
instructions).

Tested with MoinMoin 1.8.

See also: http://moinmo.in/ParserMarket/AaFigure


Usage

ASCII Art figures can be inserted into a MoinMoin [http://moinmo.in] WikiText page the following
way:

{{{#!aafig scale=1.5 foreground=#ff1010
DD o--->
}}}





The parser name is aafig and options are appended, separated with spaces.
Options that require a value take that after a = without any whitespace
between option and value.  Supported options are:



	scale=<float>

	aspect=<float>

	textual

	textual_strict

	proportional

	linewidth=<float>

	foreground=#rrggbb

	fill=#rrggbb






There is no background as the SVG backend ignores that. And it is not possible
to pass generic options.

The images are generated and stored in MoinMoin’s internal cache. So there is
no mess with attached files on the page. Each change on an image generates a
new cache entry so the cache may grow over time. However the files can be
deleted with no problem as they can be rebuilt when the page is viewed again
(the old files are not automatically deleted as they are still used when older
revision of a page is displayed).







          

      

      

    

  

    
      
          
            
  
Appendix


API and Implementation Notes


External Interface

Most users of the module will use one of the following two functions. They
provide a high level interface. They are also directly accessible as
aafigure.process respectively aafigure.render.


	
aafigure.aafigure.process(input, visitor_class, options=None)

	Parse input and render using the given visitor class.





	Parameters:	
	input – String or file like object with the image as text.

	visitor_class – A class object, it will be used to render the
resulting image.

	options – A dictionary containing the settings. When None is
given, defaults are used.






	Returns:	instantiated visitor_class and the image has already been
processed with the visitor.




	Exception:	This function can raise an UnsupportedFormatError exception
if the specified format is not supported.












	
aafigure.aafigure.render(input, output=None, options=None)

	Render an ASCII art figure to a file or file-like.





	Parameters:	
	input – If input is a basestring subclass (str or unicode), the
text contained in input is rendered. If input is a file-like
object, the text to render is taken using ``input.read().

	output – If no output is specified, the resulting rendered image
is returned as a string. If output is a basestring subclass, a file
with the name of output contents is created and the rendered image
is saved there. If output is a file-like object, output.write()
is used to save the rendered image.

	options – A dictionary containing the settings. When None is
given, defaults are used.






	Returns:	This function returns a tuple (visitor, output), where
visitor is visitor instance that rendered the image and output
is the image as requested by the output parameter (a str if it
was None, or a file-like object otherwise, which you should
close() if needed).




	Exception:	This function can raise an UnsupportedFormatError exception
if the specified format is not supported.











The command line functionality is implemented in the main function.


	
aafigure.aafigure.main()

	implement an useful main for use as command line program








Internal Interface

The core functionality is implemented in the following class.


	
class aafigure.aafigure.AsciiArtImage(text, options=None)

	This class holds a ASCII art figure and has methods to parse it.
The resulting list of shapes is also stored here.

The image is parsed in 2 steps:


	horizontal string detection.

	generic shape detection.



Each character that is used in a shape or string is tagged. So that
further searches don’t include it again (e.g. text in a string touching
a fill), respectively can use it correctly (e.g. join characters when
two or more lines hit).


	
__init__(text, options=None)

	Take a ASCII art figure and store it, prepare for recognize






	
recognize()

	Try to convert ASCII art to vector graphics. The result is stored in
self.shapes.









Images are built using the following shapes. Visitor classes must be able to
process these types.


	
class aafigure.shapes.Arc(start, start_angle, end, end_angle, start_curve=True, end_curve=True)

	A smooth arc between two points






	
class aafigure.shapes.Circle(center, radius)

	Circle with center coordinates and radius.






	
class aafigure.shapes.Group(shapes=None)

	A group of shapes






	
class aafigure.shapes.Label(position, text)

	A text label at a position






	
class aafigure.shapes.Line(start, end, thick=False)

	Line with starting and ending point. Both ends can have arrows






	
class aafigure.shapes.Point(x, y)

	A single point. This class primary use is to represent coordinates
for the other shapes.






	
class aafigure.shapes.Rectangle(p1, p2)

	Rectangle with two edge coordinates.






	
aafigure.shapes.group(list_of_shapes)

	return a group if the number of shapes is greater than one






	
aafigure.shapes.point(obj)

	return a Point instance.
- if object is already a Point instance it’s returned as is
- complex numbers are converted to Points
- a tuple with two elements (x,y)








Options

The options dictionary is used in a number of places.
Valid keys (and their defaults) are:

Defining the output:



	file_like <str>:

	Use the given file like object to write the output. The object
needs to support a .write(data) method.

	format <str>:

	Choose backend/output format: ‘svg’, ‘pdf’, ‘png’ and all bitmap
formats that PIL supports can be used but only few make sense. Line
drawings have a good compression and better quality when saved as
PNG rather than a JPEG. The best quality will be achieved with SVG,
tough not all browsers support this vector image format at this
time (default: 'svg').






Options influencing how an image is parsed:



	textual <bool>:

	Disables horizontal fill detection. Fills are only detected when
they are vertically at least 2 characters high (default: False).

	textual_strict <bool>:

	Disables fill detection completely. (default: False).

	proportional <bool>:

	Use a proportional font. Proportional fonts are general better
looking than monospace fonts but they can mess the figure if you
need them to look as similar as possible to the ASCII art (default:
False).






Visual properties:



	background <str>:

	Background color in the form #rgb or #rrggbb, not for SVG
output (default: #000000).

	foreground <str>:

	Foreground color in the form #rgb or #rrggbb (default:
#ffffff).

	fill <str>:

	Fill color in the form #rgb or #rrggbb (default: same as
foreground color).

	line_width <float>:

	Change line with, SVG only currently (default: 2.0).

	scale <float>:

	Enlarge or shrink image (default: 1.0).

	aspect <float>:

	Change aspect ratio. Effectively it is the width of the image that
is multiplied by this factor. The default setting 1 is useful
when shapes must have the same look when drawn horizontally or
vertically.  However, 0.5 looks more like the original ASCII and
even smaller factors may be useful for timing diagrams and such.
But there is a risk that text is cropped or is drawn over an object
besides it.

The stretching is done before drawing arrows or circles, so that
they are still good looking (default: 1.0).








Miscellaneous options:



	debug <bool>:

	For now, it only prints the original ASCII art figure text
(default: False).









Visitors

A visitor that can be used to render the image must provide the following
function (it is called by process())


	
class your.Visitor

	
	
visit_image(aa_image)

	An AsciiArtImage instance is passed as parameter. The visiting
function needs to implement a loop processing the shapes attribute.

This function must take care of actually outputting the resulting image
or it must provide the data in a form useful for the caller
(process() returns the visitor so that the result can be read for
example).









Example stub class:

class Visitor:
    def visit_image(self, aa_image):
        self.visit_shapes(aa_image.shapes)

    def visit_shapes(self, shapes):
        for shape in shapes:
            shape_name = shape.__class__.__name__.lower()
            visitor_name = 'visit_%s' % shape_name
            if hasattr(self, visitor_name):
                getattr(self, visitor_name)(shape)
            else:
                sys.stderr.write("WARNING: don't know how to handle shape %r\n"
                    % shape)

    def visit_group(self, group):
        self.visit_shapes(group.shapes)

    # for actual output implement visitors for all the classes in
    # aafigure.shapes:

    def visit_line(self, lineobj):
        ...
    def visit_circle(self, circleobj):
        ...
    etc...








Source tree

The sources can be checked out using bazaar [http://bazaar-vcs.org]:

bzr lp:aafigure





Files in the aafigure package:


	aafigure.py

	ASCII art parser. This is the main module.

	shapes.py

	Defines a class hierachy for geometric shapes such as lines, circles etc.

	error.py

	Define common exception classes.

	aa.py

	ASCII art output backend. Intended for tests, not really useful for the end
user.

	pdf.py

	PDF output backend. Depends on reportlab.

	pil.py

	Bitmap output backend. Using PIL, it can write PNG, JPEG and more formats.

	svg.py

	SVG output backend.



Files in the docutils directory:


	aafigure_directive.py

	Implements the aafigure Docutils directive that takes these
ASCII art figures and generates a drawing.



The aafigure module contains code to parse ASCII art figures and create
a list of of shapes. The different output modules can walk through a list of
shapes and write image files.




TODO


	Symbol detection: scan for predefined shapes in the ASCII image
and output them as symbol from a library



	Symbol libraries for UML, flowchart, electronic schematics, ...



	The way the image is embedded is a hack (inserting a tag trough a raw node...)



	Search for ways to bring in color. Ideas:



	have an :option: to set color tags. Shapes that touch such a tag
inherit it’s color. The tag would be visible in the ASCII source tough:

.. aafig::
    :colortag: 1:red, 2:blue

    1--->  --->2







	:color: x,y,color but counting coordinates is no so fun





drawback: both are complex to implement, searching for shapes that belong
together. It’s also not always wanted that e.g. when a line touches a
box, both have the same color






	aafigure probably needs arguments like font-family, ...



	Punctuation not included in strings (now a bit improved but if it has a
graphical meaning , then that is chooses, even if it makes no sense),
underlines in strings are tricky to detect...



	Dotted lines? ...
e.g. for ---...--- insert a dashed line instead of 3 textual dots.
Vertical dashed lines should also work with :.



	Group shapes that belong to an object, so that it’s easier to import and
change the graphics in a vector drawing program. [partly done]



	Path optimizer, it happens that many small lines are output where a long
line could be used.










3rd party integration of aafigure

There are also other projects that integrate aafigure. The following items are
maintained by other developers.


MediaWiki Plug-in

MediaWiki [http://www.mediawiki.org] is a popular implementation of a WikiWikiWeb [http://c2.com/cgi/wiki?WikiWikiWeb] which is also used for
WikiPedia [http://www.wikipedia.org/]. A plug-in can be found here:
http://www.mediawiki.org/wiki/Extension:Aafigure




AsciiDoc Plug-in

AsciiDoc [http://www.methods.co.nz/asciidoc/] is a plain text documentation format that can be converted into
several formats such as HTML or PDF.  A plug-in to use aafigure drawings in
such documents can be found here:
http://code.google.com/p/asciidoc-aafigure-filter/






Authors and Contact


	Chris Liechti: original author

	Leandro Lucarella: provided many patches



The project page is at https://launchpad.net/aafigure
It should be used to report bugs and feature requests.




License

Copyright (c) 2006-2017 aafigure-team
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:


	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the aafigure-team nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.



THIS SOFTWARE IS PROVIDED BY THE AAFIGURE-TEAM ‘’AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AAFIGURE-TEAM BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.







          

      

      

    

  

    
      
          
            

   Python Module Index


   
   a
   


   
     		 	

     		
       a	

     
       	[image: -]
       	
       aafigure	
       

     
       	
       	   
       aafigure.aafigure	
       

     
       	
       	   
       aafigure.shapes	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | C
 | G
 | L
 | M
 | P
 | R
 | V
 


_


  	
      	__init__() (aafigure.aafigure.AsciiArtImage method)


  





A


  	
      	aafigure.aafigure (module)


      	aafigure.shapes (module)


  

  	
      	Arc (class in aafigure.shapes)


      	AsciiArtImage (class in aafigure.aafigure)


  





C


  	
      	Circle (class in aafigure.shapes)


  





G


  	
      	Group (class in aafigure.shapes)


  

  	
      	group() (in module aafigure.shapes)


  





L


  	
      	Label (class in aafigure.shapes)


  

  	
      	Line (class in aafigure.shapes)


  





M


  	
      	main() (in module aafigure.aafigure)


  





P


  	
      	Point (class in aafigure.shapes)


  

  	
      	point() (in module aafigure.shapes)


      	process() (in module aafigure.aafigure)


  





R


  	
      	recognize() (aafigure.aafigure.AsciiArtImage method)


  

  	
      	Rectangle (class in aafigure.shapes)


      	render() (in module aafigure.aafigure)


  





V


  	
      	visit_image() (your.Visitor method)


  

  	
      	Visitor (class in your)


  







          

      

      

    

  _static/comment.png





_static/plus.png





_static/aafigure-logo.png
aafigure

DD o—-—-->
Ny o——

text to image converter





_static/down-pressed.png





nav.xhtml

    
      Table of Contents


      
        		aafigure Documentation


        		Manual
          
          		Overview
            
            		ASCII Art


            		Other text to image tools


            


          


          		Installation
            
            		aafigure


            


          


          		Usage
            
            		Command line tool


            


          


          


        


        		Short introduction
          
          		Lines


          		Arrows


          		Boxes


          		Fills


          		Text
            
            		direct


            		quoted


            		textual option


            


          


          		Other


          


        


        		Examples
          
          		Simple tests


          		Flow chart


          		UML


          		Electronics


          		Timing diagrams


          		Statistical diagrams


          		Schedules


          


        


        		Integrations
          
          		Sphinx
            
            		Quick Example


            		Enabling the extension in Sphinx


            		Configuration


            


          


          		Docutils
            
            		Docutils directive


            		Docutils plug-in


            


          


          		MoinMoin plug-in
            
            		Usage


            


          


          


        


        		Appendix
          
          		API and Implementation Notes
            
            		External Interface


            		Internal Interface


            		Options


            		Visitors


            		Source tree


            		TODO


            


          


          		3rd party integration of aafigure
            
            		MediaWiki Plug-in


            		AsciiDoc Plug-in


            


          


          		Authors and Contact


          		License


          


        


      


    
  

_static/up-pressed.png





_static/comment-bright.png





_static/minus.png





_static/up.png





_static/comment-close.png





_static/file.png





_static/ajax-loader.gif





_static/down.png





